Multiple Linear Regression

3 minutes
Share the link to this page
Copied
  Completed
You need to have access to the item to view this lesson.
One-time Fee
$49.99
List Price:  $69.99
You save:  $20
€42.59
List Price:  €59.63
You save:  €17.04
£37.38
List Price:  £52.34
You save:  £14.95
CA$68.88
List Price:  CA$96.44
You save:  CA$27.55
A$75.15
List Price:  A$105.21
You save:  A$30.06
S$64.59
List Price:  S$90.43
You save:  S$25.84
HK$388.86
List Price:  HK$544.44
You save:  HK$155.57
CHF 39.79
List Price:  CHF 55.71
You save:  CHF 15.91
NOK kr506.76
List Price:  NOK kr709.51
You save:  NOK kr202.74
DKK kr318.02
List Price:  DKK kr445.26
You save:  DKK kr127.23
NZ$86.13
List Price:  NZ$120.58
You save:  NZ$34.45
د.إ183.58
List Price:  د.إ257.03
You save:  د.إ73.45
৳6,099.41
List Price:  ৳8,539.66
You save:  ৳2,440.25
₹4,528.31
List Price:  ₹6,340
You save:  ₹1,811.69
RM204.82
List Price:  RM286.77
You save:  RM81.94
₦72,442.79
List Price:  ₦101,425.71
You save:  ₦28,982.91
₨13,987.49
List Price:  ₨19,583.60
You save:  ₨5,596.11
฿1,571.90
List Price:  ฿2,200.79
You save:  ฿628.88
₺2,128.57
List Price:  ₺2,980.17
You save:  ₺851.59
B$270.91
List Price:  B$379.30
You save:  B$108.38
R843.60
List Price:  R1,181.11
You save:  R337.50
Лв83.31
List Price:  Лв116.64
You save:  Лв33.33
₩73,711.75
List Price:  ₩103,202.35
You save:  ₩29,490.60
₪161.11
List Price:  ₪225.57
You save:  ₪64.45
₱2,955.15
List Price:  ₱4,137.45
You save:  ₱1,182.30
¥7,786.19
List Price:  ¥10,901.29
You save:  ¥3,115.09
MX$900.51
List Price:  MX$1,260.79
You save:  MX$360.27
QR181.90
List Price:  QR254.67
You save:  QR72.77
P661.31
List Price:  P925.89
You save:  P264.57
KSh6,436.07
List Price:  KSh9,011.01
You save:  KSh2,574.94
E£2,365.19
List Price:  E£3,311.46
You save:  E£946.26
ብር7,798.56
List Price:  ብር10,918.61
You save:  ብር3,120.05
Kz45,840.83
List Price:  Kz64,180.83
You save:  Kz18,340
CLP$45,630.90
List Price:  CLP$63,886.91
You save:  CLP$18,256.01
CN¥352.65
List Price:  CN¥493.74
You save:  CN¥141.09
RD$3,172.92
List Price:  RD$4,442.34
You save:  RD$1,269.42
DA6,481.70
List Price:  DA9,074.91
You save:  DA2,593.20
FJ$113.56
List Price:  FJ$159
You save:  FJ$45.43
Q382.28
List Price:  Q535.22
You save:  Q152.94
GY$10,441.91
List Price:  GY$14,619.51
You save:  GY$4,177.59
ISK kr6,307.53
List Price:  ISK kr8,831.05
You save:  ISK kr2,523.51
DH459.17
List Price:  DH642.87
You save:  DH183.70
L843.72
List Price:  L1,181.28
You save:  L337.55
ден2,619.62
List Price:  ден3,667.68
You save:  ден1,048.06
MOP$400.22
List Price:  MOP$560.34
You save:  MOP$160.12
N$842.06
List Price:  N$1,178.95
You save:  N$336.89
C$1,836.93
List Price:  C$2,571.85
You save:  C$734.91
रु7,221.83
List Price:  रु10,111.14
You save:  रु2,889.31
S/168.03
List Price:  S/235.26
You save:  S/67.22
K215.14
List Price:  K301.22
You save:  K86.07
SAR187.57
List Price:  SAR262.61
You save:  SAR75.04
ZK1,151.70
List Price:  ZK1,612.47
You save:  ZK460.77
L216.75
List Price:  L303.46
You save:  L86.71
Kč1,033.24
List Price:  Kč1,446.63
You save:  Kč413.38
Ft16,328.51
List Price:  Ft22,861.23
You save:  Ft6,532.71
SEK kr463.40
List Price:  SEK kr648.80
You save:  SEK kr185.39
ARS$71,679.59
List Price:  ARS$100,357.17
You save:  ARS$28,677.57
Bs344.87
List Price:  Bs482.84
You save:  Bs137.97
COP$190,085.85
List Price:  COP$266,135.40
You save:  COP$76,049.55
₡24,966.25
List Price:  ₡34,954.75
You save:  ₡9,988.50
L1,314.02
List Price:  L1,839.74
You save:  L525.71
₲335,254.99
List Price:  ₲469,383.81
You save:  ₲134,128.82
$U1,958.78
List Price:  $U2,742.46
You save:  $U783.67
zł179.75
List Price:  zł251.67
You save:  zł71.91
Already have an account? Log In

Transcript

So far Python we can also use this on multiple linear regression. So, pretty common sense ah called regression This is why we call it a simple linear regressions. So, far multiple linear regression we have more variables here. So, for simple linear regression we have only one variable here right. So, we can create multiple linear regression by changing this r s value here Okay, so we can add in more columns or more variables here packed the land that we have SEPA we have a pet. We've okay then we can just Randy's Korea okay.

So we are going Ah, we call this our coefficient. So constant is our 1.8451. Pet, land is 0.711 separate is 0.6549. petal width is minus 0.56 to six. So the p value is zero. Here we have the confidence interval. So constant is a, we can say constant is from the, from this value to this value we've lost 95% correct.

Okay then pacta land, you can see a pattern we have 0.599 to 0.8 to three with 95% correct. So you can see SEPA we've extended the coefficient or the values between 0.5 to three to 0.7 a salad with 95% correct. And then Petra we can see, we have a minus 0.814 to minus 0.311. With 95% corral 95% completed, then we can look into the R square. Then we can look into the R square, so r square is 0.8590 point if ISIS okay then we can look into r square is 0.8 by nine adjusted R square is 0.8 Pisces, the higher the R squared betta as SS e smaller SS e sum of squared error. So the higher the R square the sum of squared error is smaller.

So it means the higher the R squared or smaller somehow

Sign Up

Share

Share with friends, get 20% off
Invite your friends to LearnDesk learning marketplace. For each purchase they make, you get 20% off (upto $10) on your next purchase.