LInear Regression

4 minutes
Share the link to this page
Copied
  Completed
You need to have access to the item to view this lesson.
One-time Fee
$49.99
List Price:  $69.99
You save:  $20
€48.05
List Price:  €67.28
You save:  €19.22
£39.95
List Price:  £55.93
You save:  £15.98
CA$70
List Price:  CA$98.01
You save:  CA$28
A$77.04
List Price:  A$107.87
You save:  A$30.82
S$67.44
List Price:  S$94.42
You save:  S$26.98
HK$389.10
List Price:  HK$544.78
You save:  HK$155.67
CHF 44.44
List Price:  CHF 62.22
You save:  CHF 17.78
NOK kr556.72
List Price:  NOK kr779.46
You save:  NOK kr222.73
DKK kr358.40
List Price:  DKK kr501.79
You save:  DKK kr143.39
NZ$85.70
List Price:  NZ$119.98
You save:  NZ$34.28
د.إ183.61
List Price:  د.إ257.07
You save:  د.إ73.45
৳6,001.50
List Price:  ৳8,402.58
You save:  ৳2,401.08
₹4,222.56
List Price:  ₹5,911.93
You save:  ₹1,689.36
RM223.33
List Price:  RM312.68
You save:  RM89.35
₦84,537.08
List Price:  ₦118,358.68
You save:  ₦33,821.60
₨13,893.48
List Price:  ₨19,451.98
You save:  ₨5,558.50
฿1,729.40
List Price:  ฿2,421.30
You save:  ฿691.90
₺1,728.30
List Price:  ₺2,419.75
You save:  ₺691.45
B$290.56
List Price:  B$406.81
You save:  B$116.24
R904.38
List Price:  R1,266.21
You save:  R361.82
Лв93.87
List Price:  Лв131.43
You save:  Лв37.55
₩70,321.20
List Price:  ₩98,455.31
You save:  ₩28,134.10
₪186.14
List Price:  ₪260.61
You save:  ₪74.47
₱2,946.86
List Price:  ₱4,125.84
You save:  ₱1,178.98
¥7,723.73
List Price:  ¥10,813.84
You save:  ¥3,090.11
MX$1,023.24
List Price:  MX$1,432.62
You save:  MX$409.38
QR183.09
List Price:  QR256.35
You save:  QR73.25
P685.61
List Price:  P959.91
You save:  P274.30
KSh6,473.70
List Price:  KSh9,063.70
You save:  KSh2,590
E£2,483.19
List Price:  E£3,476.67
You save:  E£993.47
ብር6,258.40
List Price:  ብር8,762.26
You save:  ብር2,503.86
Kz45,623.90
List Price:  Kz63,877.12
You save:  Kz18,253.21
CLP$48,677.26
List Price:  CLP$68,152.06
You save:  CLP$19,474.80
CN¥362.39
List Price:  CN¥507.37
You save:  CN¥144.98
RD$3,026.05
List Price:  RD$4,236.71
You save:  RD$1,210.66
DA6,682.11
List Price:  DA9,355.50
You save:  DA2,673.38
FJ$113.79
List Price:  FJ$159.32
You save:  FJ$45.52
Q387.67
List Price:  Q542.77
You save:  Q155.10
GY$10,507.02
List Price:  GY$14,710.67
You save:  GY$4,203.65
ISK kr6,982.10
List Price:  ISK kr9,775.50
You save:  ISK kr2,793.40
DH502.26
List Price:  DH703.21
You save:  DH200.94
L911.81
List Price:  L1,276.61
You save:  L364.79
ден2,937.49
List Price:  ден4,112.73
You save:  ден1,175.23
MOP$402.62
List Price:  MOP$563.70
You save:  MOP$161.08
N$908.73
List Price:  N$1,272.29
You save:  N$363.56
C$1,838.13
List Price:  C$2,573.53
You save:  C$735.40
रु6,757.51
List Price:  रु9,461.06
You save:  रु2,703.54
S/190.76
List Price:  S/267.08
You save:  S/76.32
K202.16
List Price:  K283.05
You save:  K80.88
SAR187.70
List Price:  SAR262.80
You save:  SAR75.09
ZK1,384.85
List Price:  ZK1,938.90
You save:  ZK554.05
L239.10
List Price:  L334.76
You save:  L95.66
Kč1,219.85
List Price:  Kč1,707.89
You save:  Kč488.04
Ft19,758.62
List Price:  Ft27,663.65
You save:  Ft7,905.03
SEK kr556.42
List Price:  SEK kr779.03
You save:  SEK kr222.61
ARS$50,191.65
List Price:  ARS$70,272.32
You save:  ARS$20,080.67
Bs347
List Price:  Bs485.83
You save:  Bs138.82
COP$221,888.26
List Price:  COP$310,661.31
You save:  COP$88,773.05
₡25,529.79
List Price:  ₡35,743.76
You save:  ₡10,213.96
L1,269.10
List Price:  L1,776.85
You save:  L507.74
₲394,167.14
List Price:  ₲551,865.53
You save:  ₲157,698.39
$U2,140.09
List Price:  $U2,996.30
You save:  $U856.20
zł208.79
List Price:  zł292.33
You save:  zł83.53
Already have an account? Log In

Transcript

Okay, in this rapid miner we can create a simple linear regression on this simple linear regression we call this model. So we can do something ideas. So, retrieve I always select attributes. So as usual we are going to design so we select attributes. Okay, so we select reviews and we shoe into the setting, then we try to select a subset. So I want to select I see two variables.

Korea pri. Then we set a row. So we go for seven roll Okay, so we go into the setting, so attribute petal length will be the target row okay then we go into the slide we have spring data. So we do spray data. So we go into this survey true we show Let me see entry. Let me see why all these okay 0.7 0.3 okay 0.7 and 0.3 so 0.7 is 70% Usually 70% is for training and 30% is for this testing.

So I agree okay then let me see the several I think the saros should be some target close up labor. So let's go into several is actually essential the labor So, better longer be the labor okay okay there we are ready to me monitor how we going to linear regression. So linear regressions then we go into a prime order Okay, so, we go to a messy drawing. So, this one should be here then a model should be here okay this one should be here and a model should be here to output both of these. So, what this means is that we split the data 70% should be used to create or train this linear regression model, they usually call a trained in a regression model that we apply the model and we put in the remaining or the 30% data and we will try to predict so we can create a run here.

So, we shoe size Prime order so prediction is here. So this will be the de 0.3 or 30% of the data. So this is how we create this linear regression model in this rapid miner studio.

Sign Up

Share

Share with friends, get 20% off
Invite your friends to LearnDesk learning marketplace. For each purchase they make, you get 20% off (upto $10) on your next purchase.